Fluvastatin synergistically improves the antiproliferative effect of everolimus on rat smooth muscle cells by altering p27Kip1/cyclin E expression.
نویسندگان
چکیده
Multiple intracellular signaling pathways stimulate quiescent smooth muscle cells (SMCs) to exit from G(0) and re-enter the cell cycle. Thus, a combination of two drugs with different mechanisms of action may represent a suitable approach to control SMC proliferation, a prominent feature of in-stent restenosis. In the present study, we investigated the effect of everolimus, a mammalian target of rapamycin inhibitor, in combination with fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on proliferation of rat SMCs. The antiproliferative action of everolimus was amplified by 2.5-fold by the addition of subliminal concentrations of fluvastatin (5 x 10(-7) M), lowering the IC(50) value from 2.5 x 10(-9) to 1.0 x 10(-9) M. The increased antiproliferative effect of everolimus by fluvastatin was prevented in the presence of mevalonate, farnesol, or geranylgeraniol, suggesting the involvement of prenylated proteins. Cell cycle analysis and [3H]thymidine incorporation assay demonstrated that the two drugs synergistically interfered with the progression of G(1) phase. In particular, the drug combination significantly up-regulated p27(Kip1) levels by 47.0%, suppressed cyclin E by 43.0%, and it reduced retinoblastoma (Rb) hyperphosphorylation by 79.0%, compared with everolimus alone. Retroviral overexpression of cyclin E conferred a significant resistance of rat SMCs to the antiproliferative action of the drug combination, measured by cell counting, [3H]thymidine incorporation, and cell cycle analysis, with higher levels of hyperphosphorylated form of Rb. Taken together, these results demonstrated that everolimus acts synergistically with fluvastatin to inhibit SMC proliferation by altering the expression of cyclin E and p27(kip1), which affects Rb phosphorylation and leads to G(1) phase arrest.
منابع مشابه
Bradykinin B1 receptor blocks PDGF-induced mitogenesis by prolonging ERK activation and increasing p27Kip1.
The mechanism by which the bradykinin B1 receptor (B1R) inhibits platelet-derived growth factor (PDGF)-stimulated proliferation was investigated in cultured rat mesenteric arterial smooth muscle cells. The B1R agonist des-Arg9-bradykinin (DABK) was found to inhibit PDGF-mediated activation of the cyclin E-cyclin-dependent kinase 2 (Cdk2) complex and to prevent hyperphosphorylation of retinoblas...
متن کاملMevastatin can cause G1 arrest and induce apoptosis in pulmonary artery smooth muscle cells through a p27Kip1-independent pathway.
Advanced pulmonary arterial hypertension is characterized by extensive vascular remodeling that is usually resistant to vasodilator therapy. Mevastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-limiting step for cholesterol synthesis. HMG-CoA reductase inhibitors have been shown to upregulate the cyclin-dependent kinase inhibitor p27Kip1 and to block...
متن کاملSingle perivascular delivery of mitomycin C stimulates p21 expression and inhibits neointima formation in rat arteries.
OBJECTIVE Mitomycin C (MMc) is an antibiotic that exerts a potent antiproliferative effect in tumor cells. Because the proliferation of vascular smooth muscle cells (VSMCs) plays a prominent role in the development of restenosis after percutaneous coronary interventions, the present study examined the effect of MMc on VSMC proliferation and on neointima formation after arterial balloon injury. ...
متن کاملFluvastatin Synergistically Improves the Antiproliferative Effect of Everolimus on Rat Smooth Muscle Cells by Altering p27/ Cyclin E Expression
Multiple intracellular signaling pathways stimulate quiescent smooth muscle cells (SMCs) to exit from G0 and re-enter the cell cycle. Thus, a combination of two drugs with different mechanisms of action may represent a suitable approach to control SMC proliferation, a prominent feature of in-stent restenosis. In the present study, we investigated the effect of everolimus, a mammalian target of ...
متن کاملRed wine polyphenols inhibit proliferation of vascular smooth muscle cells and downregulate expression of cyclin A gene.
BACKGROUND Red wine polyphenols have been shown to contribute to the "French paradox" phenomenon, which consists of lower morbidity and mortality from coronary heart disease in the French population. Although vascular smooth muscle cell (VSMC) proliferation plays an important role in the progression of atherosclerotic lesions, the effects of red wine polyphenols on VSMC proliferation have not b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 74 1 شماره
صفحات -
تاریخ انتشار 2008